A Positive Proof of the Littlewood-Richardson Rule using the Octahedron Recurrence

نویسندگان

  • Allen Knutson
  • Terence Tao
  • Christopher Woodward
چکیده

We define the hive ring, which has a basis indexed by dominant weights for GLn(C), and structure constants given by counting hives [KT1] (or equivalently honeycombs, or Berenstein-Zelevinsky patterns [BZ1]). We use the octahedron rule from [RR, FZ, P, S] to prove bijectively that this “ring” is indeed associative. This, and the Pieri rule, give a self-contained proof that the hive ring is isomorphic as a ring-with-basis to the representation ring of GLn(C). In the honeycomb interpretation, the octahedron rule becomes “scattering” of the honeycombs. This recovers some of the “crosses and wrenches” diagrams from the very recent preprint [S], whose results we use to give a closed form for the associativity bijection. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Littlewood-richardson Skew Tableaux

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

ar X iv : 0 70 6 . 37 38 v 1 [ m at h . A G ] 2 6 Ju n 20 07 EQUIVARIANT LITTLEWOOD - RICHARDSON TABLEAUX

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

A Concise Proof of the Littlewood-Richardson Rule

We give a short proof of the Littlewood-Richardson rule using a sign-reversing involution.

متن کامل

Puzzles and (equivariant) Cohomology of Grassmannians

The product of two Schubert cohomology classes on a Grassmannian Grk(C) has long been known to be a positive combination of other Schubert classes, and many manifestly positive formulae are now available for computing such a product (e.g., the Littlewood-Richardson rule or the more symmetric puzzle rule from A. Knutson, T. Tao, and C. Woodward [KTW]). Recently, W. Graham showed in [G], nonconst...

متن کامل

A Geometric Littlewood-richardson Rule

We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they break into Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004